Excitatory Post-Synaptic Potential Mimicked in Indium-Zinc-Oxide Synaptic Transistors Gated by Methyl Cellulose Solid Electrolyte
نویسندگان
چکیده
The excitatory postsynaptic potential (EPSP) of biological synapses is mimicked in indium-zinc-oxide synaptic transistors gated by methyl cellulose solid electrolyte. These synaptic transistors show excellent electrical performance at an operating voltage of 0.8 V, Ion/off ratio of 2.5 × 106, and mobility of 38.4 cm2/Vs. After this device is connected to a resistance of 4 MΩ in series, it exhibits excellent characteristics as an inverter. A threshold potential of 0.3 V is achieved by changing the gate pulse amplitude, width, or number, which is analogous to biological EPSP.
منابع مشابه
Learning and Spatiotemporally Correlated Functions Mimicked in Oxide-Based Artificial Synaptic Transistors
Learning and logic are fundamental brain functions that make the individual to adapt to the environment, and such functions are established in human brain by modulating ionic fluxes in synapses. Nanoscale ionic/electronic devices with inherent synaptic functions are considered to be essential building blocks for artificial neural networks. Here, Multi-terminal IZO-based artificial synaptic tran...
متن کاملSub-0.5 V Highly Stable Aqueous Salt Gated Metal Oxide Electronics
Recently, growing interest in implantable bionics and biochemical sensors spurred the research for developing non-conventional electronics with excellent device characteristics at low operation voltages and prolonged device stability under physiological conditions. Herein, we report high-performance aqueous electrolyte-gated thin-film transistors using a sol-gel amorphous metal oxide semiconduc...
متن کاملP24: The Role of Ionotropic Glutamate Receptors in the Induction of LTP
Long-term potentiation (LTP) is a reflection of synaptic plasticity that has an important role in learning and memory. LTP is a long-lasting increase of synaptic activity due to enhancement of excitatory synaptic transmission after a high-frequency train of electrical stimulation. The role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in excitatory synaptic tran...
متن کاملZinc as a Neuromodulator in the Central Nervous System with a Focus on the Olfactory Bulb
The olfactory bulb (OB) is central to the sense of smell, as it is the site of the first synaptic relay involved in the processing of odor information. Odor sensations are first transduced by olfactory sensory neurons (OSNs) before being transmitted, by way of the OB, to higher olfactory centers that mediate olfactory discrimination and perception. Zinc is a common trace element, and it is high...
متن کاملInvestigation on the negative bias illumination stress-induced instability of amorphous indium-tin-zinc-oxide thin film transistors
Articles you may be interested in A thermalization energy analysis of the threshold voltage shift in amorphous indium gallium zinc oxide thin film transistors under simultaneous negative gate bias and illumination Instability of amorphous hafnium-indium-zinc-oxide thin film transistors under negative-bias-illumination stress Appl. Investigation of zinc interstitial ions as the origin of anomalo...
متن کامل